Printed Page:- 04	Subject Code:- BAS0204
	Roll. No:
NOIDA INSTITUTE OF ENGINEERING	G AND TECHNOLOGY, GREATER NOIDA
	Affiliated to AKTU, Lucknow)
В.	Tech
	AMINATION (2023 - 2024)
· ·	tical Foundations – II
Time: 3 Hours General Instructions:	Max. Marks: 100
	n paper with the correct course, code, branch etc.
1. This Question paper comprises of three Secti	
Questions (MCQ's) & Subjective type question	
2. Maximum marks for each question are indica	-
3. Illustrate your answers with neat sketches wh	nerever necessary.
4. Assume suitable data if necessary. 5. Proferably, write the anguage in acquential or	ndon
5. Preferably, write the answers in sequential or6. No sheet should be left blank. Any written m	
evaluated/checked.	aterial after a blank sheet will not be
SECTION-A	20
1. Attempt all parts:-	
1-a. Value of the integral $\int_0^1 x^5 (1-x^3)^3 dx$	is (CO1)
(a) 1/50	1
(b) 1/60	
(c) 1/30	
(d) -1/30) ~
1-b.	1
The volume $\int \int \frac{dxdydz}{R}$ of the reg	gion R bounded by
The volume	(CO1)
(a) 24	
(b) 48	
(c) -24	
(d) -48	
1-c. General solution of the second order	linear differential equation 1
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 8\frac{\mathrm{d}y}{\mathrm{d}x} + 16y = 0$ is: (CO2)	•
/ \ A.	
(a) $(A + Bx)e^{4x}$	
(b) $Ae^{-4x} + Be^{-4x}$	
(c) $A + Be^{4x}$	

	(d)	None of these	
1-d.	T	he P. I of the differential equation $(D^2 + 4)y = Cos2x$ is : (CO2)	1
		$\frac{x}{4}\cos 2x$	
	(a)	4 · · · · · · · · · · · · · · · · · · ·	
	(b)	$\frac{x}{4} \sin 2x$	
	(c)	x cos2x	
	(d)	None of these	
1-e.		$\partial^2 \mathbf{u} + \partial^2 \mathbf{u} + \partial^2 \mathbf{u} = 0$	1
	T	the linear partial differential equation $2\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} + 4\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{t}} + 3\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = 0$ is (CO3)	
	(a)	Parabolic	
	(b)	Elliptic	
	(c)	Hyperbolic	
	(d)	None of these	
1-f.		he Particular Integral of the partial differential equation $D^2 - DD' + D' - 1$ $z = \sin(x + 2y)$ is (CO3)	1
	(a)	$-\frac{1}{2}\cos(x+2y)$	
	(b)	$\frac{1}{2}\cos(x+2y)$ $\frac{1}{2}\sin(x+2y)$ $-\frac{1}{2}\sin(x+2y)$	
	(c)	$\frac{1}{2}\sin(x+2y)$	
	(d)	$\frac{1}{2}\sin(x+2y)$ $-\frac{1}{2}\sin(x+2y)$ averse Laplace of the function $f(s) = \frac{e^{-2s}}{s}$ (CO4)	
1-g.	Ir	enverse Laplace of the function $f(s) = \frac{e^{-2s}}{s}$ (CO4)	1
	(a)	u(t-2)	
	(b)	u(t+2)	
	` ′	-u(t+2)	
	(d)	-u(t-2)	
1-h.	L	aplace transform of t^3e^{-3t} is (CO4)	1
		<u>6</u>	
	(a)	$(s+3)^4$	
	(b)	$\frac{6}{(s-3)^4}$	
	(b)	3	
	(c)	$(s-3)^4$	
	(d)	None of these	
1-i.		he interest earned by Rs.4800 in 2 years and 3 months at the rate of 8.5% p.a. hen simple interest is (CO5)	1
	(a)	918	

Page 2 of 4

	(b) 922	
	(c) 925	
	(d) 928	
1-j.	If $P: Q = 2: 3$, $Q: R = 4: 5$ and $R: S = 6: 7$, then $P: S$ is (CO5)	1
	(a) 18:25	
	(b) 17:25	
	(c) 16:35	
	(d) 8:11	
2. At	tempt all parts:-	
2.a.	Evaluate the value of $\int_0^\infty x^{1/4} e^{-\sqrt{x}} dx$ (CO 1)	2
2.b.	Find the particular integral of differential equation $(D^2 - 2D + 2)y = \sinh x \cdot (CO2)$	2
2.c.	Solve the partial differential equation $yzp+zxq = xy$ (CO3)	2
2.d.	Express the following function in terms of unit step function	2
	$f(t) = \begin{cases} \sin t & 0 < t < \pi \\ \sin 2t & \pi < t \end{cases} $ (CO 4)	
2.e.	The prices of a scooter and a television set are in the ratio 3:2. If a scooter costs Rs.6000 more than the television set, then find the price of the television set? (CO5)	2
SEC'	TION-B	30
	aswer any <u>five</u> of the following:-	30
3-a.	Find by the double integration area of the region enclosed by the curves $x^2 + y^2 = a^2$, $x + y = a$ in the first quadrant. (CO 1)	6
3-b.	Apply Dirichlet's Integral to find the volume and mass contained in the solid	6
	region in the first octant of the ellipsoid $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} + \frac{\mathbf{z}^2}{\mathbf{c}^2} = 1$, if the density at any point is $\rho(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{k}\mathbf{x}\mathbf{y}\mathbf{z}$ (CO 1)	
3-c.	Solve: $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$, given that $x = 2$ and $y = 0$ when $t = 0$. (CO2)	6
3-d.	Solve the differential equation: $(D^2 - 2D - 3)y = 2e^{2x} + 10\sin 3x$, given that $y(0) = 2$, $y'(0) = 4$. (CO2)	6
3.e.	Solve the differential equation $x^2 (y - z)p + y^2 (z - x)q = z^2 (x - y)$. (CO3)	6
3.f.	Evaluate the value of the integral $\int_0^\infty e^{-2t} \sin^3 t \ dt$. (CO 4)	6
3.g.	Two solutions of milk and water are combined in the ratio 2:3 by volume. The resultant solution is a 40% milk solution. Find the milk concentration in the first solution if the concentration of milk in the second is 60%? (CO5)	6
SEC'	ΓΙΟΝ-C	50

- 4. Answer any one of the following:-
- 4-a. 10 Evaluate by changing the order of integration:. *0 (CO 1)
- Evaluate by changing the variables , $\iint_{\mathbb{R}} (x+y)^2 dx dy$ where R is the region 4-b. 10 bounded by the parallelogram x+y=0, x+y=2, 3x-2y=0 and 3x-2y=3. (CO1)
- 5. Answer any <u>one</u> of the following:-
- Solve the differential equations by method of variation of parameters: 5-a. 10 $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x .$ (CO2)
- Solve the following differential equation by changing to independent variable: 5-b. 10 $x \frac{d^2y}{dx^2} + (4x^2 - 1) \frac{dy}{dx} + 4x^3y = 2x^3$. (CO2)
- 6. Answer any one of the following:-
- Solve: $(D + D' 1)(D + D' 3)(D + D')z = e^{x+y} \sin(2x + y)$. (CO3) 10 6-a.
- Solve the linear partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 2 \frac{\partial^2 z}{\partial v^2} = (y 1)e^x$ 6-b. 10 (CO3)
- 7. Answer any <u>one</u> of the following:-
- Solve the following differential equation by using Laplace transformation 7-a. 10 $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = t e^{-t}$, Given that x(0) = 1, x'(0) = 2.
- Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$ 7-b. 10
- 8. Answer any one of the following:-
- (i) Vinod starts from his house and travels 4 km in East direction after that he 10 8-a. turns towards left and moves 4 km. Finally, he turns towards left and moves 4 km. At what distance and in which direction he finally stands from his starting point? (ii) Arjun lent out a sum of money at compound interest rate of 30% per annum for 2 years .It would fetch ₹500 more if interest is compounded half -yearly. Find the sum. (CO5)
- 8-b. (i) Prerna invested Rs x for 6 months, Ankita Rs 2400 for 10 months and Pavneet 10 Rs 3900 for 8 months. If Ankita got Rs 6000 out of a total profit of Rs 19,200, then what is the money?
 - (ii) In an open ground, Rakesh walks 20 m towards North, turns left and goes 40 m. He turns to his left again to walk 50 m. How far is he from starting point? (CO5)